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AFIT/GSO/ENY/97D-03 

Abstract 

The purpose of this study was to determine the feasibility of launching a Delta Clipper- 

like vehicle on an optimal, non-coplanar trajectory to rendezvous with an earth orbiting object in 

one orbit or less. The focus of the research was to determine what such a trajectory would look 

like, and to determine the cost, in payload mass, of flying such a trajectory. A model for the 

ascent trajectory was developed using the dynamics equations of motion, an atmosphere model, 

and an aerodynamic model for the DC-Y concept vehicle. A boundary value problem was posed 

and solved for a coplanar rendezvous. The non-coplanar solutions were obtained through 

extrapolation from the coplanar solution. 
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OPTIMAL NON-COPLANAR LAUNCH TO QUICK REDEZVOUS 

I. INTRODUCTION 

/./ Motivation 

The motivation for this research was to take a new look at the way space vehicles are 

launched to rendezvous with satellites and/or space stations. Current practice is to set 

launch windows based on the time the desired orbital plane passes over the launch 

facility. Once the vehicle is in orbit, a game of catch-up is played for a day or two until 

the rendezvous occurs. The tradeoff for such restricted time schedules is that this is a 

minimum energy method that minimizes fuel requirements and maximizes the mass of 

the vehicle and the payload being sent to orbit. The new designs and concepts for single 

stage to orbit (SSTO) vehicles and 'space planes', as well as the increased presence of 

potential rendezvous 'targets' (i.e. space station, troubled satellite etc.), has prompted the 

search for a more flexible way to rendezvous with orbiting objects. Specifically, could a 

launch method be developed with the ability to access a range of orbital planes that set 

the launch time to match the phase of the approaching target and allowing us to pop-up 

next to the 'target' at burnout? If this could be achieved, how much payload mass would 

it cost to follow such a rendezvous trajectory? This capability could offer a solution to 

emergency repair or re-supply situations as well as a variety of other applications that are 

left for speculation by the reader. 



1.2 Overview 

The rest of this chapter is devoted to the background and description of the DC-Y 

concept vehicle. Chapter 2 describes the set up of the problem, as well as the various 

factors that need to be accounted for in this problem. Chapter 2 also begins the 

derivation of the equations of motion. The equations of motion are completed, the 

optimality conditions are derived, and the boundary value problem is posed in Chapter 3. 

In Chapter 4, the computer algorithms are discussed, and the coplanar case is solved and 

extrapolated to provide the non-coplanar solutions for several different cases. The results 

for a non-aerodynamic scenario are presented in Chapter 5 and a gravity turn scenario in 

Chapter 6. Finally, conclusions and recommendations are presented in Chapter 7. 

1.3 Background 

In 1990, The Ballistic Missile Defense Organization (BMDO) began investigating 

the feasibility of SSTO vehicles. After considering multiple design concepts, McDonnell 

Douglas was awarded the contract to develop and test their Delta Clipper Experimental 

Launch Vehicle (DC-X) in 1991. This design was a vertical take-off, vertical landing 

(VTVL) concept that launched vertically and after reaching orbit and delivering its 

payload, would reenter the atmosphere nose down. It could be controlled through the use 

of body flaps and at a specified point in the reentry, would perform a rotation to base first 

and land in the same orientation from which it launched. Under the guidance of the Air 

Force's Phillips Laboratory, the first DC-X test flight at White Sands Missile Range 

occurred only 24 months after BMDO authorized McDonnell Douglas to proceed with 



the development. Unfortunately, BMDO's mission was modified to dealing with only 

ground-based missile defense and their involvement with SSTO technologies ended with 

the test flight. Currently, NASA is proceeding with development of SSTO vehicles under 

the X-33 program. Unfortunately, the DC-X-type designs have been eliminated from the 

design options for the X-33. 

The vehicle modeled in this research is a modification to the DC-X termed the 

DC-Y. It is essentially a larger version of the tested DC-X that still follows the VTVL 

philosophy, and is basically conical in shape. Four large and four smaller engines, all of 

which use LH2/LO2 for propellant, power it. In addition, there is also a gaseous oxygen- 

hydrogen reaction control system used to control the roll of the vehicle. Table 1-1 lists 

some of the statistics for the DC-Y. Figure 1-1 gives a diagram of both the DC-X and 

DC-Y vehicles that was downloaded from a McDonnell Douglas web site, which no 

longer exists. The quality is not the best, but it gives a good idea of what the two 

vehicles look like. In addition, Figure 1-2 gives some different views of the vehicle, 

which, for a while, was an X-33 design candidate 

Table 1-1. DC-Y Statistics 

Length 127 ft. 

Width 18 ft. 

Dry Weight 104,000 lbs. 

Loaded Weight 1,279,000 lbs. 

Thrust to Weight Ratio 1.4 

Specific Impulse (Isp) 450 sec. 
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Figure 1-1. DC-X and DC-Y Designs 
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Figure 1-2. Views of the DC-Y 



The major motivating factor for choosing the DC-Y design as the model for this 

research was the excellent lift to drag ratio this design possesses. Since we will be 

allowing the vehicle to have an angle of attack along the trajectory, the higher this lift to 

drag ratio, the better. Figure 1-3, shows the coefficients of lift and drag versus angle of 

attack from data obtained for the DC-Y design. 
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Figure 1-3. CL and CD vs. Angle of Attack for DC-Y 

Now that we have an understanding of the vehicle used in this research, we can 

proceed to the next chapter and begin setting up the problem. 



H. MODELING THE TRAJECTORY 

2.1 Literature Search 

A search of the current literature resulted in finding articles about the DC-X 

program and plane change maneuvers that could be performed once a coplanar launch 

trajectory had been followed. However, no articles or papers were found that discussed 

launching on a trajectory that would result in a direct insertion into a non-coplanar orbit. 

2.2 Reference Frames 

Development of the equations of motion is a modification of the development 

presented in Vinh[6,21-27]. The modifications made for this problem are: roll is defined 

positive to the right, and the heading angle is defined positive from the north. These 

angles will be defined shortly. 

The first step is to establish the reference frames necessary to set up the problem. 

The requirements for this problem are such that a geocentric inertial reference frame 

(X,Y,Z) is sufficient. This reference frame is fixed with respect to the earth and is 

rotating with constant angular velocity a about the Z-axis. Three quantities in the 

inertial frame are required to specify the vehicle's position. These quantities are: 

1. r, the magnitude of the position vector measured from the center of the earth 
2. 6, longitude measured positive eastward from the X-axis in the equatorial 

plane 
3. <|>, latitude measured positive northward from the equator along a meridian. 

Next, it is convenient to develop the dynamics of this system in a frame which is rotating 

with respect to the center of the earth (x,y,z). The x-axis is defined along the position 

vector (up), the y-axis is in the earth's equatorial plane and is orthogonal to the x-axis 



(east), and the z-axis is such that it completes the right-handed coordinate system, 

orthogonal to both the x-axis and y-axis (north). The local horizontal plane is defined as 

the plane that passes through the vehicle and is orthogonal to the position vector. It is the 

y-z plane in the rotating coordinate frame. The flight path angle, y, is defined as the 

angle from the local horizontal plane to the velocity vector, v. This angle is positive 

when measured above the local horizontal plane. The heading angle, \\i, is the angle from 

the local meridian of longitude to the projection of v on the local horizontal plane. This 

angle is positive when measured eastward. Figures 2-1 through 2-3 show the coordinate 

systems and the various quantities described above. 

Z( north pole) 

z (north) 

♦ 
x(up) 

r    / 
y(east) 

V^T/   e 

e 

Y 

X 
\ \ \ Equatorial plane 

(prirrenHidian) 

Figure 2-1. Reference Frames 
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Figure 2-2.   Flight path Angle 
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Figure 2-3.   Heading Angle 



2.3  State Variables and Equations of Motion 

Now that the reference frames are defined, the problem can be set up. First, I'll 

define the variables of interest for the state space vector. These 7 elements are: 

r - magnitude of the radius vector 
9 - longitude of the vehicle 
<|> - latitude of the vehicle 
v - speed of the vehicle 
Y - flight path angle 
i|/ - heading 
m - mass of the vehicle 

Note that this is a traditional six-element state vector but mass is carried along with the 

state since this will be one of the important elements to examine for the trajectories that 

will be flown. 

We are now ready to start developing equations of motion. The equation we need 

to determine the various components for is the five-part acceleration form of Newton's 

Second Law for a rotating frame: 

m— = F-2m©xv-mc5x(ö)xr) (2-1) 
dt 

Let l, j, k define unit vectors in the x,y,z rotating frame. Developing the right-hand side 

first, we can write directly from the diagrams, 

r = r i (2-2) 

and, 

A A A 

v = (v siny) i + (v cosy simy) j + (v cosy cosv|/) k (2-3) 

Writing co in terms of the rotating frame (x,y,z) gives, 

co = (co sin<j>) i + (co cos<j)) k (2-4) 

10 



We can now write: 

© x v = -(©v coa|) cosy sini|/) i + (©v(coa|) siny - sin<)> cosy cosv)/)) j + (© v sin<]) cosy sinv|/) k 

and, 

5 x (© x r) = -(rco2 cos2<|)) i + (r©2 sin<]) cos<|)) k 

The final term on the right-hand side of (2-1) is F, the force term. The forces acting on 

the vehicle are gravity, the aerodynamic forces, lift, L and drag, D, and the propulsive 

force thrust, f. The drag force, D, is defined to be opposite to the velocity vector v, and 

the lift force, L, is orthogonal to it. We assume symmetric flight for this vehicle such 

that f occurs in the lift-drag plane. We define angle of attack, a, as the angle between 

f and v. This allows us to write the components of thrust along the lift and velocity 

vectors as Tsina and Tcosa respectively. It is now convenient to group the aerodynamic 

and propulsive force components together. Let FT be the component along the velocity 

vector and FN be the component orthogonal to FT such that: 

FT=Tcosa-D 

FN =Tsina + L 

We can now define the force vectors in the rotating frame (x,y,z). The force due to 

gravity can be written as: 

Fg = mg = -mg(r) i (2-6) 

In addition, since FT is oriented along v, we can write from equation 2-2: 

_* /\ A A 

FT = (FT siny) ,i + (FT cosy sini|/) j + (FT cosy cosvj/) k (2-7) 

11 



The final force vector to be written is Rj, which is the force collinear with lift. Lift is in lN> 

the r,v (vertical) plane when the vehicle is in planar flight. Roll, a, is the angle the lift 

vector makes with the vertical plane and is measured positive to the right. We can now 

decompose FN into components FNcosa along the vertical plane (orthogonal to v) and 

FNsina orthogonal to the vertical plane. This now forms a right-handed system (a, b, c): 

(FN cos a, v, - FN sin a). Our rotating frame (x,y,z), can be obtained from (a,b,c) by a 

rotation \\i of the horizontal plane and a rotation y of the vertical plane such that: 

i 1 0 0 cosy siny 0 a 

j = 0 sini|/ -cosvj; -siny cosy 0 b 

k 0 COSV|/ sinvj/ 0 0 1 c 

This allows us to write FN = (FN cose) ä - (FN sina) c in the rotating frame as: 

FN = 

FNcosocosy 
FN (sinacosij/ - cosa siny sini|/) 

- FN (cosa siny cosv|/ - sina sinvj/) 

l 

k 
V J 

(2-8) 

We now have all of the pieces for the right-hand side of equation 2-1 decomposed into 

components in the (x,y,z) rotating frame. In order to obtain the left-hand side of equation 

2-1, we need to take derivatives, in the planet frame, of equation 2-2. In order to do so, 

we must determine how the (x,y,z) frame is rotating with respect to the planet frame. 

Recall that the (x,y,z) frame is derived by a rotation in 0 about the Z-axis of the planetary 

frame followed by a rotation in <j> about the negative y-axis of the rotating frame. Also 

12 



recalling the transformation between the frames used for equation 2-4, we can write the 

rotation of the (x,y,z) frame with respect to the (X,Y,Z) frame as: 

Q = (9 sin<|>) i -(<()) j + (9 cos<|)) k 

pdf 
The derivative with respect to the planetary frame of equation 2-2, ——, can now be 

dt 

calculated as: 

v= 1*L = ^ + Qxr = (r)i + (r9cos(j)) j + (r(|))k (2-9) 
dt        dt 

Equating components of equations 2-3 and 2-9 yields the first three scalar equations of 

motion: 

f   =   vsiny 

9   =   vcos^sin^ (2-10) 

<t>   = 

rcos<j) 
v cosy cos \\f 

Next, we take the inertial derivative of 2-9 to obtain the appropriate components for the 

left-hand side of equation 2-1. Grouping the equations for the right-hand side of 2-1 by 

component and setting them equal to the components of the derivative of equation 2-9 

yields a complicated version of the other three scalar equations of motion. Some tedious 

(and sometimes tricky) algebraic manipulation coupled with substitutions from equations 

2-10 is required to get these equations in a more useful and reduced form. In addition, a> 

terms are dropped from the derivation since co, the rotation of the earth, is small on the 

13 



time-scale of this problem. The results of this effort yields the following set of scalar 

equations: 

v = —FT -gsiny 
m 

2 

vy = —FNcosa-gcosy +—cosy + 2©vcos<|)sinvj/ (2-11) 
m r 

vvj/ = — +—cosysinv(/tan(f» + 2ö)v(sin(|)-cos(|)cosv|/tanY) 
mcosy      r 

Before we can replace FT and FN in equation 2-11 with the equations derived in 2-5, we 

need to define the lift and drag terms, L and D, explicitly. These equations are: 

L=icLSpv2 

2 (2-12) 
D = -cDSpv2 

where cD and cL are the coefficients of drag and lift respectively, S is the surface area of 

the vehicle, and p is the atmospheric density. Substituting 2-12 into equation 2-5 gives: 

1 2 
FT =Tcosa—cDSpv 

2 (2-13) 
FN =Tsina + —cLSpv2 

We define the mass flow rate as: 

m = ß =--4- (2-14) 

where T is thrust, go is acceleration due to gravity at sea level, and Isp is specific impulse. 

14 



Making the final substitution of 2-13 into 2-11, recalling equation 2-10, and adding 2-14 

gives the seven scalar equations of motion for this system: 

f   =   vsiny 
vcosy sin v(/ 

0 
rcos(j) 

v cosy cos vj/ 
r 

Tcosa   cDSpv2 /o i«x v   = ^-^ gsmy (2-15) 
m 2m 

Tsinacosa    cTSpvcosa    gcosy    vcosy    _ ,  . 
y   =    + -k-r - + L + 2cocos<t)Sin\i/ 

mv 2m v r 
Tsinasina    cTSpvsina    v cosy sin vi/tan <b    .   ..   , , . y   _    +-^— + ■ 1- + 2co(sin(|)-cos(t)cosvj/tany) 

mvcosy 2m cosy r 
T 

m   =   ß = — 
go!sp 

The traditional form for equations of motion for a non-linear time-dependent system is: 

x = f(x,u,t) (2-16) 

where x represents the state variables, and u represents the control variables. That 

tradition will be continued here as 2-16 is a more convenient form for further discussions. 

Now that the equations of motion are defined, we are ready to bring optimal control into 

the discussion, which will begin, in chapter three. 

15 



m.      OPTIMAL CONTROL 

3.1 Introduction 

This chapter is devoted to the development and discussion of optimal control 

methods presented in Bryson and Ho [2, 87-89], and their utilization in the solution of 

this problem. Specifically, we will look at optimizing a continuous, dynamic system with 

functions of the state variables specified at an unknown final time. The objective is to 

solve a minimum time launch to rendezvous scenario by determining the initial state and 

co-state values that will satisfy a desired set of final conditions. A boundary value 

problem will be posed which will establish these constrained final conditions. The result 

will determine a solution trajectory, given in terms of the state variables, and a final time 

which are optimal. 

3.2 Optimal Control Development 

We begin by defining the performance index, which we want to minimize: 

J = <|,[x(tf),tf]+[tfL[x(t),u(t),t]dt (3-1) 
•'to 

where <|>[x(tf), tf] defines the final boundary conditions as a function of the state at the 

final time and the final time, and L[x(t), u(t), t] is a Lagrangian function that is a function 

of the state, x(t), the control vector, u(t), and time. Next, we define a vector function, vj/, 

which defines the constraints at the final time such that 

v|/[x(tf),tf] = 0. (3-2) 

We want to adjoin the constraints from 3-2 and the differential equations of motion 

16 



x = f [x(t), u(t), t],      to given (3-3) 

to 3-1 with Lagrange multipliers v and k(t) respectively. Making these substitutions 

results in the following equation: 

J = [<|> + vTi|/]t=t + f{L(x,u,t) + AJ[f(x,u,t)-x]}dt. (3-4) 
1 ■'tn 

We can now define the Hamiltonian function as 

H = L(x,u,t) + A,T(t)f(x,u,t) 

and make the following substitution 

$ = f + v  \|/- 

(3-5) 

(3-6) 

Substituting 3-5 and 3-6 into 3-4 and taking the differential yields 

dJ =  + L dt + —dx 
dx 

\ 

A=tf 
Jt„     ^v 

+ 11—8x +—8u-A,T8x 
'o ^ dx du 

dt-L|t=t„dt0.   (3-7) 

The next step is to integrate 3-7 by parts to get 

dJ = 
(d$> T  ^ 
— + L + Xx      dtf + 

v st ;t=tf dx 
dx 

t=tf 

+ 
Jt„ dx 

X  ^Hs ' OX + —ou 
)       du 

+ (^T8x)t=to 

dt-L|t=t dt0. 

(3-8) 

Since tf is unspecified, we want to choose the X(t) to make the coefficients of 5x(t), dx(tf), 

and dtf in equation 3-8, equal to zero. In other words, we want: 

dx dx    dx' 

^(tf)=  • 
(d®^ ^ + yT^ 

VdxJt=tf    {dx dxjt=t[ 

d®  a<t>.   T ^ 
—+ L + Vxl      = 1—+—* + L 
di )t_t     { dt     dx 't=tf 

= 0 

(3-9) 

(3-10) 

(3-11) 
A=tf 

17 



As a result of imposing these conditions, 3-8 can now be simplified to the following 

form: 

tf3H 
dJ = *7(t0)dx(t0)+ [f-^-oudt-H(t0)dt0 . (3-12) 

From equation 3-12, we can conclude that changes in J will occur if: at to, unspecified 

da 
state variables have non-zero corresponding Lagrange multipliers, or — is non-zero as 

du 

the result of unit impulses in the controls on the interval t0 < t < tf, or to is unspecified, 

which is not the case here. Since we are trying to extremize J, we want dJ = 0, and 

therefore, we can write: 

du 5u    9u 
to<t<tf (3-13) 

We can also make the statement that any state variable which is free to vary (unspecified) 

at t = to, x;(to), will have its corresponding Lagrange multiplier equal to zero, A-i(to) = 0. 

We can now write all of the equations necessary for a stationary value of J as: 

Q 

x = f(x,u,t), 

i = -^- = -XT — - — 
dx dx    dx' 

du 3u    5u 

x;(t0)   specified,    or   X,i(t0) = 0 

—- + v  —- + \—!- + v—- f + L 
a a    Vox dx) 

= 0, 
t=tf 

v|/[x(tf),tf] = 0. 

(3-14) 

(3-15) 

(3-16) 

(3-17) 

(3-18) 

(3-19) 

(3-20) 

18 



3.3 Application of Optimal Control 

Now that we know the equations we need to solve this problem, equations 3-14 

through 3-20, we need to write these equations in terms of the variables and conditions of 

this problem. Since this is a minimum time problem, we can state that <|)[x(tf),tf] = 0 and 

L = 1. This is a standard method for minimum time optimization and will not be derived 

here. We're not going to rewrite the equations of the previous section to reflect these 

conditions, however these substitutions will be made in the development of the equations 

henceforth. 

We begin by recognizing that we already know the first equation, 3-14 as the set 

of seven, scalar equations of motion 2-15. This allows us to proceed to writing equation 

3-15. In order to do this, we first define the Lagrange multipliers, X(t), as: 

X (t) = \kt,XQ,Xfy,'kv,Xy,Xy,Xm). (3-21) 

Note that the subscripts match the state variables and thus they are sometimes referred to 

as the co-state variables. We can now define the Hamiltonian function from 3-5, as 

H(t) = L(x, u, t) + XJ (t) f (x, u, t). Expanding this out gives: 

H(t)=l+ 

^(vsiny)-«-^ 

r, 

^vcosysimj/^ 

rcosij) 
+K 

vcosycosv|/ 

+A, 
Tcosa  CßSpv 

2m m 
-gsiny 

. , Tsinacoscy  cT Spvcoscr   gcosy   vcosy   .       .  .    ^ 
+AJ +-1ZH B—L+ ?-+2cöcos|>sinv|/ 

mv 2m 
r 

+x, v 
Tsinasina  cLSpvsina  vcosysim|/tan<|) 

-+■ 
V_ mwosy       2mcosy 

+2eo(sin(j)-cos(()COS^/tanY) 

+^mß 

(3-22) 
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Taking the partial derivatives of equation 3-22 with respect to each of the seven state 

variables, will yield seven more scalar equations. These equations are termed the co-state 

equations of motion, as they describe how the co-state variables are changing with time. 

These equations are very long and are presented in Appendix A. 

Next, we want to determine the appropriate equations from 3-16. Taking the 

partial derivatives of 3-22 with respect to the control variables, roll (a) and angle of 

attack (a), will give two equations, equal to zero, termed the optimality conditions. 

These equations can then be solved for the respective control variable to yield the control 

laws. Taking — gives the first optimality condition: 
da 

■\ 

Tsinasina   CLSpvsina^ - + 
mv 2m     ) K Tsinacosa   qSpvcosa 

^ mvcosy       2mcosy , 
= 0. (3-23) 

Solving 3-23 for a, yields the control law for roll: 

a = tan" 
Ur 

■secy (3-24) 

Taking — yields the second optimality condition, given by: 
da 

r, 
-K 

Tsinx  CpSpv2 

m        2m 
+\ 

Tcosacosa  q^pvcosa 
A 

mv 2m +\ 
Tcosasiro  CLSpvsiro 

nucosy        2mcosy 
=0(3-25) 

where cD and cL are the derivatives with respect to a. These terms appear because cD 

and cL are both functions of the angle of attack. Equation 3-25 cannot be solved 

explicitly for a because of this dependence. We can, however, make a good 

approximation for a if we assume that the aerodynamic forces are much smaller than the 
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thrust terms and can thus be neglected. This is reasonable because the scenarios 

considered in this research either had no atmosphere or applied the optimal control 

outside of the atmosphere. Using this assumption, equation 3-25 reduces to: 

-K 
(Tswa) A fTcosacosrs^ 
V m K mv 

+M 
Tcosa sins' 

\^ imcosf ) 
=0 (3-26) 

which can be solved for a to yield the approximate control law for angle of attack: 

a «tan -l 
V^vV 

—(A,y cos a + A,v secy sin a) (3-27) 

Now that we have the control laws defined, we can move on to condition 3-17 to help 

determine the initial conditions of the state and co-state variables. 

At the initial time, t = to, the state and co-state variables will either be specified, 

free to vary, or zero. We can specify all of the state variables at the initial time except the 

flight path angle, y, and the heading, \\f which are both free to vary. From condition 3-17, 

this implies that Xy and Xw must be equal to zero at to. The rest of the co-state variables 

are free to vary at to. So, we can write the state and co-state variables at t = to as: 

r - specified 
9 - specified 
<|> - specified 

x(to)=   v-specified ^(t0)= Xv-free (3-28) 
y - free 
i|/ - free 

m - specified 

Since we are carrying the mass, m, in the state for convenience, not necessity, km is 

carried for symmetry. It does not influence the equations of motion or the control laws 

that have been derived, so we can ignore it. Therefore, its value will be specified at zero 

K- -free 
xe - -free 

V -free 

^v- -free 

*v = 0 

^V = 0 

K - specified = = 0 
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on the entire interval t0 < t < tf. The remainder of the specified values will be 

determined based on the choice for to. The final step is to complete the boundary value 

problem, and establish the requirements for the vehicle at time t = tf, including 

determining tf. 

We will use equations 3-18 through 3-20 for this process. We begin by noting 

that there are a total of seven free initial conditions, six shown in 3-28 and the final time 

tf. Since we're trying to find the minimum time trajectory, tf can be thought of as a free 

initial condition. Having seven free initial conditions dictates that we must have seven 

boundary conditions at the final time. We can conclude that we need to specify an 

altitude, a speed, the vehicle flying level, a heading, and ensure the vehicle is in the 

proper orbital plane. This gives five conditions, which means we'll have to use 3-18 and 

3-19 to specify the other two conditions. 

The first condition we want to specify is that the altitude at the final time is equal 

to the altitude of the low earth orbit we are trying to reach, rf. Therefore, we require: 

r(tf) = rf. (3-29) 

The second condition we will specify is that the vehicle is traveling level or in the 

horizontal plane at tf. This stipulates that: 

Y(tf) = 0. (3-30) 

The third condition is to specify that the speed of the vehicle has reached orbital speed, 

which is « 7.5 km/s in low earth orbit. It is important to note that this speed is with 

respect to the inertial, earth centered frame. Up to this point, the speed, v, has been 

defined with respect to the rotating frame (x,y,z). Therefore we must define the speed to 
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include the component due to the earth's rotation. The velocity with respect to the 

inertial frame can be written as: 

Vj = v + c5xr 

Since we specified y = 0 above, we can refer back to Figure 2-3 and modify equation 2-3 

to state the inertial velocity at tf is: 

Vj =(vsinv|/ + corcos(|)) j + (vcosv|/)k. (3-31) 

Taking the magnitude of 3-31, gives the inertial speed we desire: 

Vj = [(vsini|/ + (Drcos<|))2 + v2 cos2 \\i\ (3-32) 

The third condition for orbital speed can now be written as: 

Vl(tf) = vf (3-33) 

The next two conditions require some spherical trigonometry. The fourth condition 

requires that the vehicle have the proper heading at the final time. Like the speed, this 

heading is with respect to the inertial frame. As a result of adding the rotation of the 

earth component to the velocity (3-31), we now must define the inertial heading, \\ih as: 

vsinv|/ + corcos<|) 
\\il =tan (3-34) 

VCOSVj/ ) 

Consider the diagram in Figure 3-1.   We know i, the inclination, 6, the final longitude, 

and ((), the final latitude of the orbit we're trying to achieve. In order to have the correct 

heading, we must specify i^ at tf such that: 

cosvi/j = cos(0 - 0orb )sin(i). (3-35) 
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Figure 3-1 Determining Heading and Plane Conditions 

For the fifth condition, we want to specify that the vehicle is in the desired orbital plane. 

Referring to Figure 3-1 again, we can define the plane condition by mandating 90rb such 

that: 

sin(9 - 9orb) = tan <|)ctn(i). (3-36) 

We can now use equations 3-29 through 3-36 along with condition 3-20 to define five of 

the boundary conditions as: 

M>[x(tf),tf]
: 

r-rf 0 

vi-vf 0 

Y = 0 

COS\\J1 - cos(G - 0orb )tan(i) 0 

sin(9 - 0orb) = tan<|)ctn(i) 0 

(3-37) 
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Now we will derive the other two final conditions. Substituting <|)[x(tf),tf] = 0, L = 1, and 

3-18 into 3-19 and noticing 3-32 has no explicit time dependence, 3-19 reduces to: 

Q = (xTf + L)t=tf=0 

Referring to equation 3-5, this is the Hamiltonian at t = tf. Therefore our sixth boundary 

condition is: 

H(tf) = 0. (3-38) 

Equation 3-38 determines the value for the final time. 

The quest for the final boundary condition will now commence. We start by 

recalling and expanding equation 3-6, also making the appropriate substitution for 

<j>[x(tf),tf] to yield the following result: 

<D(tf) = (vTi|/)t=tf 

Vi(r-rf) 
v2Oi-vf) 

v3y 
v4 (cos n/j - cos(9 - 0orb)sin(i)) 
v5(sin(9 - 0orb) - tan<|>ctn(i)) 

(3-39) 

At this point, we refer back to equation 3-18 and take the partial derivative of 3-39 with 

respect to the state variables to determine A,(tf). Doing this yields 

Vj + v2A-v4B 
v4 sin(0 - 9orb )sin(i) + v5 cos(9 - 0orb) 

- v2C + v4D - v5 sec2 <|>ctn(i) 

Wf) = 

I'M kQ 

^(j, 

*v 
= 

xr 

hw 

kJ t=tf 

v2E + v4F 

v2G-v4I 

(3-40) 

t=tf 

where the following simplifications have been made: 
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A = 
co cos (j)( v sin \y + cor cos §) 

sin v^cov cos <|> cosy 
D = ;  

c = cor sin ((>( v sin \\i + cor cos <|>) 

D 
sin n/jcorv sin <|> cos \\i 

E = 
v + corcos<|)sinv[/ 

F = 
sin VJ/J (cos v|/(v sin i|/ + cor cos <|)) - v cos \\i sin y) 

G = 
corcos(()cosv|/ 

1 = 
sin\|/j(v2 -corvcos<|)sinv]i) 

(3-41) 

(3-42) 

(3-43) 

(3-44) 

(3-45) 

(3-46) 

(3-47) 

(3-48) 

There are two items of interest to mention at this point. First notice that in equation 3-40, 

km = 0 by calculation. This further reinforces the decision to ignore it. Second, there are 

six remaining equations in 3-40, and five unknown multipliers, v. This is the key to 

boundary condition number seven. Using the third, fourth, and sixth equations to solve 

for V2, V4, and V5 and substituting the results into the second equation gives the following 

equation which is independent of the unknown v's: 

X.Q   + 
(IE + FG) 

sin(0-6orb)sin(i) 

+ 
^OE + FGH^ED + CFH^aC-DG/ 

(EE + FG)sec2<t>ctn(i) 
cos(0-0orb) 

= 0 (3-49) 
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Equation 3-49 is the seventh boundary condition. Now, let's summarize the results from 

all of this derivation. Pulling together 3-37, 3-38, and 3-49 gives the seven boundary 

conditions at t = tf as 

v|/[x(tf),tf] = 

r-rf 

vi-vf 

cosvi/j -cos(9-9orb)sin(i) 
sin(0-eorb)-ctr<i)tan(t) 

H 
fAJE + kXT) 

sin(0-9orb)sin(i) 

(lE+FG)sec2(t)Ctr<i) 
cos£>-Gorb) 

.(3-50) 

Now we have the boundary conditions at the final time, and we've identified 

which of the variables are specified, zero, or free to vary at the initial time, (3-28). The 

boundary value problem is set up and the next step is to specify the initial and final 

numerical values necessary, and start integrating trajectories. These trajectories will all 

be optimal, but probably will not leave us where we want. But, by making small 

corrections to the free initial conditions we can slowly 'step' to the coplanar solution we 

want. Once we have that, we can make changes to extrapolate away from the coplanar 

solution to the non-coplanar solutions. The algorithms developed to do this will be 

discussed in the next chapter. 
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IV.      ALGORITHMS 

4.1 Introduction 

To this point, the theoretical development of this problem has been presented. 

Now, the algorithms developed to model the problem will be discussed. Before we get 

into the details though, a few assumptions must be listed. 

1. Aerodynamics have been neglected, i.e. CD - CL = 0. 

2. Engine throttling capability exists for the vehicle. 

3. Loaded weight of the vehicle is 1,279,000 lbs. (= 580,145.5153 kg) 

4. Dry weight for the vehicle is 104,100 lbs. (= 47,219.03686 kg). 

5. The derivations and assumptions of the previous chapters are accurate. 

In addition to the assumptions, a standardized set of dimensionless units was defined in 

order to avoid conflicts with different unit systems. This unit system is defined as 

follows: 

Distance Unit: 1 DU = 6378145 m. 

Mass Unit: 1 MU = 5.976 x 1024 kg. 

Time Unit: 1 TU = 806.8118744 sec. 

Using these assumptions along with the equations of motion and the seven final 

boundary conditions, three computer algorithms have been developed to model the 

launch trajectories of the vehicle. The first program, LAUNCH, integrates a launch 

trajectory to a guessed final time and compares the end conditions to those we have 

specified from equation 3-50. Corrections are then made to the free variables at the 

initial time (refer to equation 3-28) and a new trajectory is integrated. This process 
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continues until the initial conditions are determined which satisfy the final conditions. 

These initial conditions give the solution for the coplanar trajectory. Once the initial 

coplanar solution is known, the second program, EXTRAPI, is used to find coplanar 

solutions for different orbit inclinations. The result is a list of converged initial 

conditions for each inclination that was specified. The third program, EXTRAP, is used 

to 'step' away from the coplanar solution to non-coplanar solutions by changing the 

longitude of the ascending node, 9orb. The same iterative, convergence process is used to 

give the initial conditions for the non-coplanar trajectories over the specified range for 

0orb. A more detailed look at how these programs determine the solutions follows. 

4.2 The Initial Coplanar Solution 

As mentioned above, LAUNCH is used to find the initial coplanar solution for a 

given launch site and target orbit. The program begins by reading the following 

information from an input file: 

- Initial 14-value state vector (the 7 state and 7 co-state variables are combined 

and now referred to as the state vector) 

- Initial time, throttle time, and guess of final time 

- Integration steps for the integrator 

- Longitude of the ascending node and inclination for the target orbit 

- An initial guess for the final conditions 

- Amount to perturb reference trajectory (to be explained later) 

- The desired values for the final conditions 

- Number of steps used to go from the guessed trajectory to the desired one 
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After the input information is read in, the next step is to integrate a trajectory from the 

initial time to the throttle time and then again from the throttle time to the final time. The 

throttle time is the point where the vehicle is accelerating at approximately three g's. The 

thrust is then reduced by 50% and the integration is continued to the final time. This 

throttling is done to avoid large accelerations at burnout. 

The subroutine HAMING is called to perform the numerical integration of the 

trajectory. HAMING is a fourth-order predictor-corrector algorithm, which uses the last 

four values of the state to predict the next value. The predicted value is then corrected 

using the equations of motion to obtain the new value of the state vector. This process 

continues for a specified duration determined by the number of integration steps and the 

final time. When HAMING is first initialized, we have only provided it with the first set 

of initial conditions, therefore, a Picard iteration is used to determine the next three 

values so that the predictor portion can begin. Once this is accomplished, the Picard 

iteration is no longer used and the predictor-corrector algorithm continues to the end 

time. HAMING calls a subroutine, RHS, which is the dynamics routine that contains the 

control laws, the equations of motion, and various values and conversions used in their 

determination. 

Once the trajectory has been integrated, the values of the state vector at the final 

time, along with the orbit information from the input file, are used to evaluate the 

boundary conditions 3-50. We will call this vector vj/ref. The vector \|/ref is subtracted 

from the initial guess, v|/o, to determine an error vector. The error vector tells us how far 

the reference trajectory is from our guess of the final boundary conditions. 
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The next step is to recognize that we can approximate v[/0 in following form: 

M>0*M>ref +"T^ 8xfree C4"1) 

which can be rewritten as 

M>0 - Vref * T- SXfe, . (4-2) 
^free 

The error vector mentioned above is the left-hand side of equation 4-2, and 5xfree gives 

the corrections to the free initial conditions that will give us v|/ref = \\io- Therefore, we 

need to determine ——. This is a 7 x 7 matrix that we will approximate by taking 
^free 

numerical partial derivatives. Each column of this matrix is determined by perturbing 

one of the free initial conditions by an amount 8x, integrating the trajectory, and 

evaluating the final boundary conditions to get the vector \\i'. The 1th column of the 

matrix can be approximated by: 

ox* 5x; 
(4-3) 

V^Afree /coi=i 

Performing this seven times for each of the free initial conditions completes the matrix, 

which then allows us to solve the linear system in equation 4-2 for the vector 5xfree. The 

subroutine LEQT2F does just this and gives us the corrections such that the new free 

initial conditions, Xfree(to), can be written as: 

Xfee (t0 ) = Xfe* (to ) + 5xfree (4"4) 

This process iterates until the corrections to each free variable are below a predetermined 

value. At this point, the program has converged to a set of initial conditions which 
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produce the end conditions, vj/o. Recall though that this is just the guess at final 

conditions, not the final conditions we desire. Therefore another loop is set up that 

changes the value of vj/0 by an amount determined from the input file so that the 

trajectories 'step' toward the final desired trajectory. On the final iteration, \|/0 is equal to 

our desired final conditions and the converged initial conditions provide the coplanar 

trajectory we were looking for. The convergence tolerance is relatively large during this 

process, and is narrowed once an initial coplanar solution is obtained in order to provide 

more accurate initial conditions. Once we have these initial conditions, we're ready to 

start extrapolating to different inclinations, and the non-coplanar solutions. 

4.3 Extrapolating to Different Inclinations 

Now that we have a solution for a given inclination, we can use it as a starting 

point to find the solutions for a range of different inclinations. For this research, the 

program LAUNCH was used to find the solution for a rendezvous orbit whose inclination 

was equal to the latitude of the launch site. From this solution, the inclination was 

increased in 0.5-degree intervals for a total of 31.5 degrees, and initial conditions were 

obtained for all 62 cases using the program EXTRAPI. 

EXTRAPI works in much the same way as LAUNCH. The difference is that it 

changes the value of the inclination for each iteration rather than stepping the value of v[/0. 

The guess for the final boundary conditions and the desired value for the boundary 

conditions are equal at this point from running LAUNCH. Instead, we modify the input 

file to give an initial inclination and a desired inclination along with the other quantities. 

For each new inclination determined, a new value of 0orb is determined using the latitude 
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and longitude of the launch location, the new inclination, and equation 3-36. The new 

initial conditions are determined the same as in LAUNCH and are output to a separate 

file along with the inclination once convergence is achieved. The result is a database of 

initial conditions, which satisfy the coplanar boundary conditions for each specified 

inclination (28.5 - 60 degrees in 0.5-degree increments for this study). 

4.4 Non-coplanar Solutions 

The third program, EXTRAP, gives us the results that were the motivation for this 

research. The goal was to solve for non-coplanar launch trajectories and determine how 

much payload mass could be put in orbit by following them. EXTRAP takes the coplanar 

initial conditions for a given inclination, changes the longitude of the ascending node, 

Gorb, by a specified amount, and converges to a new set of initial conditions using the 

same steps as LAUNCH. The input file differs from the EXTRAPI input file by 

specifying the range for 0orb instead of for inclination. The range used for this study was 

+/-11.25 degrees from the coplanar value for 0orb. The orbital period for a low earth 

orbit is approximately 90 minutes. The ground trace for this orbit shifts approximately 

22.5 degrees per orbit. Therefore, the worst case amount you would need to depart from 

the coplanar case would be half the range, or 11.25 degrees. When a set of initial 

conditions is converged upon for a given 9orb, the mass at tf is output to a separate file 

along with the value of 6OTb. 

The results for the first of two scenarios are presented in the next chapter. This 

scenario depicts a situation in which the aerodynamics are non-existent. This was 

accomplished by setting the coefficients of lift and drag equal to zero. While this appears 
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to be an unrealistic scenario to consider, the results obtained give an optimistic look at 

payload masses that could be delivered to orbit on non-coplanar trajectories. Payload 

masses for several inclinations, as well as an analysis of the values of control variables 

along selected trajectories will be presented. 
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V.       NON-AERODYNAMIC RESULTS 

5.7 Introduction 

As mentioned previously, this chapter presents the results for a non-aerodynamic 

scenario. The coefficients of lift and drag were set equal to zero throughout the 

trajectories in order to get an optimistic look at the payload mass deliverable to orbit as 

well as the control variables as a function of time. Five different rendezvous orbit cases 

were considered in this research. EXTRAPI was used to determine the free initial 

conditions for all but the first case, which were determined using LAUNCH. The first 

four cases examine non-coplanar trajectories off of the nominal coplanar solutions from 

this range. The inclinations selected for this study were, 28.5°, 35°, 45°, and 57°, which 

is near the inclination for the MIR space station. EXTRAP was then used to take the 

solutions for the coplanar case and extrapolate 9orb plus 11.25° and minus 11.25°, in order 

to span the 22.5° range. 

The coplanar initial conditions, the desired 11.25-degree range (plus or minus) for 

extrapolating 0orb, and the other necessary input quantities described earlier were 

assembled for the input file to EXTRAP for each case. The algorithm broke the 11.25- 

degree range for 0orb into 20 intervals and thus solved the initial conditions for 21 

trajectories with the endpoints of the range included. When EXTRAP converged to a 

solution set of initial conditions for a particular 0orb, the final mass of the vehicle, as well 

as the value of 0orb, were output to a separate data file. The final mass was then 

converted to kilograms, and the dry mass of the vehicle (47,219 kg) subtracted. The 

resulting surplus was the payload mass that could be delivered to the specified orbit. 

35 



The final case considers launching into 25-degree inclination orbits from a launch 

latitude of 28.5-degrees. Again, EXTRAPI was used to determine the first set of initial 

conditions when the maximum latitude of the orbit occurred at the same longitude as the 

launch site. Then EXTRAP moved the orbit +/-11.25-degrees and final masses were 

determined. 

\             ^-  Launch Site 

\                                      Ground Traces 

8orb -11.25 deg Z___ 1 \    ______J^—               Equator 
6°rb       9orb+ 11.25 dig         J 

e 

Figure 5-1. Case 5 Extrapolation 

All of the cases used the same set of specified initial conditions, which are listed 

below in Table 5-1. Rearth in the table refers to the radius of the earth. These initial 

conditions were determined such that to would occur 15 seconds after liftoff. This 

allowed the vehicle to clear any launch structure and perform any orientation 

maneuvering prior to the analysis of the trajectory. In addition, the final altitude and 

speed for the rendezvous orbit are listed in Table 5-2. These values were picked at 

random and do not have any special significance, other than defining a low earth orbit. 
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Table 5-1. Specified Initial Conditions 

Altitude, r - Rearth 441m 

Longitude, 0 279.45 deg East 

Latitude, <j) 28.5 deg North 

Speed, v 58.86 m/s 

Mass, m 580,145.5153 kg 

Ay 0 

Ky 0 

Table 5-2. Specified Final Conditions 

Altitude, rf 

Speed, vi 

220 km 

7.95 km/s 

Recall that all values are converted to DU, MU, TU, and radians before being used by the 

algorithms. Now that we have initial and target values, the algorithms can be run and 

some results obtained. 

5.2 Payload Mass to Orbit 

The first case considered was one in which the inclination of the rendezvous orbit 

was equal to the latitude of the launch site, 28.5 degrees for this study. This case was the 

original case for which LAUNCH was used to determine the initial conditions for the 

coplanar rendezvous.   The payload mass to orbit versus the value of 9orh is shown in 
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Figure 5-2. The coplanar value has 9orb = 3.306526258 radians with the non-coplanar 

minimum and maximum values at 8orb = 3.111049382 rad. and 0orb = 3.502003134 rad. 
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Figure 5-2. Case 1: Payload Mass vs. Orbit Longitude 

There are a few items of interest to point out here. First, the largest cost in 

payload mass is less than 400 kg. This means that the vehicle can deliver a payload to an 

orbit 11.25-degrees out of the plane for a cost of less than 400 kg. Second, notice how 

relatively flat the curve is between 3.2 and 3.4 radians. This shows that roughly the same 

payload mass that can be delivered to the coplanar orbit can also be delivered to orbits +/- 

approximately six degrees out of the plane. This is significant if the goal is to launch into 

a particular plane (not necessarily achieve quick rendezvous) because the launch window 

is now expanded from 1-2 minutes to about 45 minutes allowing more margin for 

computer glitches, weather problems etc. 
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The second case considered had the inclination for the rendezvous orbit equal to 

35-degrees. The coplanar value for 0orb = 3.980123400 radians and the respective 

minimum and maximum values were 6orb = 3.793591337 radians and 8orb = 4.186290419 

radians. The results for this case are shown below in Figure 5-3. 
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Figure 5-3. Case 2: Payload Mass vs. Orbit Longitude 

For this case, the first thing to notice is that while the payload mass to orbit for the 

coplanar orbit has decreased only slightly, we now pay a much greater payload price for 

non-coplanar trajectories. The worst case cost is now nearly 19,000 kg to go from the 

coplanar situation to 11.25-degrees out of the plane. The bright side is that for these 

circumstances, more than 10,000 kg can be delivered into low earth orbit, 11.25-degrees 

out of plane, which is still an appreciable amount. 
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Case number three increased the inclination another ten degrees to 45-degrees. 

The coplanar value of 0orb = 4.293552296 radians, with respective minimum and 

maximum values of 0Orh = 4.107020232 radians, and 0orh = 4.499719314 radians. The 

results are below in Figure 5-4. 
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Figure 5-4. Case 3: Payload Mass vs. Orbit Longitude 

The results from this plot show not only a decrease in the coplanar mass to orbit 

(as expected), but even an empty vehicle cannot achieve the same out of plane range that 

could be done at lower inclinations. The vehicle is getting less help from the earth's 

rotation as the inclination increases, therefore the final time is increasing as is the amount 

of fuel required to achieve orbit. The result is a lower payload mass delivered to orbit, 
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and attempting to reach the non-coplanar trajectories enhances this effect even more. The 

plot shows that we can only get a payload about 10.2-degrees out of plane instead of the 

desired 11.25-degrees, for values of eorb greater than the coplanar value. In addition, the 

cost per degree of going non-coplanar has increased from the previous cases. 

The fourth case was picked to look at a possible rendezvous with a satellite in a 

57-degree inclination orbit. The coplanar value for eorb = 4.516974957 radians, with 

minimum and maximum values of 9orb = 4.320625417 radians, and eorb = 4.713324499 

radians. The results for this case are shown in Figure 5-5. 
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Figure 5-5. Case 4: Payload Mass vs. Orbit Longitude 

Again, the same trends occurred as in the previous cases. Slightly less payload 

mass to orbit for the coplanar case and a higher cost for going non-coplanar. For this 
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inclination, however, we can get a payload almost 7-degrees out of the plane, which still 

gives considerable flexibility compared to the way we do things now. 

As mentioned earlier, the fifth case was rather unique. Since non-traditional 

launch methods were being considered, I thought attempting to rendezvous with an orbit 

whose inclination was less than the latitude of the launch site might provide some 

interesting results. Case 5 considers rendezvous with a 25-degree inclination orbit from a 

launch latitude of 28.5-degrees. A modified version of EXTRAPI was used to get the 

initial solution, which assumed the latitude of the orbit's ground trace reached 25 degrees 

at the same longitude of the launch site. Once this solution was found, 9orb was varied as 

in the other cases. The results for this case are below in Figure 5-6. 
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As can be seen, the results are quite interesting. From 12,000 to 15,000 kg can be 

delivered over the 22.5-degree range, centered on the launch longitude, 3.5-degrees 

below the launch latitude. Unfortunately, this good fortune does not continue to the 

equator. Payload mass fell below zero for inclinations less than 23-degrees. However, 

this adds another degree of flexibility for attempting to rendezvous with low earth 

orbiting objects. 

5.3 Control Variables 

Now that we know what the payload mass is doing for these trajectories, we will 

take a look at how the control variables, roll and angle of attack, are changing throughout 

these trajectories. Trajectories for case one and case four will be presented. 

For case one, roll and angle of attack were output as a function of time for the 

coplanar trajectory and for the maximum and minimum non-coplanar trajectories. Figure 

5-7 shows roll as a function of time for these three trajectories. 
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Notice that for the coplanar case, the vehicle maintained a minute roll to the left, 

performed a very quick roll of nearly 180 degrees, and then maintained that orientation 

for the remainder of the trajectory. The two non-coplanar cases performed almost 

identically and performed a more gradual maneuver throughout the trajectory. 

The angle of attack as a function of time for these three trajectories is shown 

below in Figure 5-8. 

I 0.50 - 

1 0.40 - 

I 0.30 - 
< 
'S 0.20 - 

+11.25 deg. 

4> 

1 0.10 - 
< 

coplanar  >^*= 
' Jy _ -11.25 deg. 

0.00 - i                       i l 

0.00 0.10 0.20 0.30 

Time (TU) 

0.40 0.50 

Figure 5-8. Angle of Attack vs. Time for Case 1 

The cusp for the coplanar case occurs in conjunction with the sharp roll maneuver 

as a result of the algorithm. All three of the main programs have a statement in them that 

only allow positive angles of attack (this will be a constraint for an aerodynamic model). 

If the angle of attack is calculated negative, a factor of pi is added to the roll and the 

angle of attack recalculated. This allows the vehicle to follow the optimal trajectory 

while always presenting the bottom of the vehicle in the direction of the velocity vector. 
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The two non-coplanar cases, however, do not encounter this and thus have smoother 

curves for both angle of attack and roll. Another item of interest is that all three 

trajectories maintain an angle of attack less than 0.552 radians (approx. 31.5 degrees) 

throughout the trajectories. This is reasonable and presents another 'sanity check' that 

the vehicle is not maneuvering unrealistically to achieve orbit. In addition, the larger 

angles of attack occur early in the trajectory, which lends itself nicely to generating lift. 

The second case considered was case four, inclination of 57-degrees. Again, the 

coplanar trajectory was considered, but the minimum and maximum non-coplanar 

trajectories differ because not all trajectories were achievable. Thus the minimum and 

maximum were set based on delivering at least 3000 kg payload to orbit. The points 

satisfying this criteria were 0OIb = 4.63 radians and 0orb 
= 4.37 radians, which convert to 

plus 6.75 degrees for the maximum and minus 7.8 degrees for the minimum. The results 

for roll are given in Figure 5-9. 
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The roll for the coplanar trajectory is more gradual than for the previous case, but 

results in roughly the same orientation at the final time. The non-coplanar cases are again 

very similar however, they rolled in opposite directions. The overall maneuver was 

smaller than for case one resulting in a different orientation at the final time. 

The angle of attack for these three trajectories is shown below in Figure 5-10. 
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Figure 5-10. Angle of Attack vs. Time for Case 4 

The angle of attack for the coplanar trajectory was roughly the same as for case 

one, however, it didn't try to go negative as before. This could also explain the more 

gradual roll for this trajectory. The non-coplanar trajectories were again similar to each 

other however much different from case one. The early angle of attack increased nearly 

0.1 radians more than before, declined much less, and increased again to over 0.9 radians 

(more than 50 degrees) near the final time. This was due to the different geometry that 
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resulted from the increase in inclination. Also, it is not necessarily infeasible since the 

vehicle would not be confronting any appreciable aerodynamic forces at that point in the 

trajectory. 

As has been shown in the previous two sections, launching on non-coplanar 

trajectories is not an infeasible idea. Very reasonable payload masses were attained for 

the cases presented. In addition, the roll and angle of attack of the vehicle as it followed 

these trajectories were completely realistic. The next chapter presents the results for the 

second scenario considered. This scenario had the vehicle ascend through the 

atmosphere on a gravity turn trajectory (roll and angle of attack equal zero) and begin the 

optimal control portion once the dynamic pressure on the vehicle is negligible. 
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VI.      GRAVITY TURN RESULTS 

6.1 Introduction 

This chapter presents the results obtained from the vehicle following a gravity 

turn trajectory until it was out of the atmosphere and beginning the optimal control 

portion of the trajectory at that point. A gravity turn trajectory is one in which roll and 

angle of attack are maintained at zero. Since these two angles are zero, no lift can be 

generated, however, drag is now present. This launch method is used by current launch 

vehicles to achieve orbit therefore any current launch vehicle could potentially follow the 

trajectories described in this chapter. 

The three main programs had to be modified to accommodate the gravity turn 

portion of the trajectory. The duration of the gravity turn portion had to be determined as 

well as the inclusion of the atmospheric and aerodynamic models. The time at which the 

vehicle began the optimal control portion of the trajectory was established by determining 

the time when the dynamic pressure on the vehicle was approximately 0.1 pounds per 

square inch. This occurred at approximately 0.24 TU into the trajectory (shortly before 

the throttle back time). This time was then used for all of the trajectories considered. 

The atmospheric modeling was accomplished through the use of the subroutine 

ATM. This subroutine was developed and detailed by Platt[5,11-13]. It models the 

atmosphere from 0 to 700-km dividing it into 21 discrete altitude bands. Given the air 

pressure at sea level and an altitude, this subroutine returned the atmospheric density for 

the given altitude. It provided a standard atmospheric model but did not take into account 
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variations due to increased solar activity or effects of winds on pressure in a particular 

region. 

The coefficients of lift and drag were calculated using the subroutine AERO. 

AERO was developed by Dr. Wiesel and returned the coefficients of lift and drag given 

an angle of attack and lift and drag data specific to the vehicle used in the model. This 

data for the DC-Y was presented earlier in Figure 1-3. Using the results from AERO and 

ATM, lift and drag forces could be calculated and include in the model. 

The final necessary modification was that the initial time of the problem and the 

initial time of the optimal control portion were now different. Since the programs were 

making corrections to the free variables at the initial time, it was necessary to distinguish 

which variables were to be corrected at which time. This was accomplished by 

correcting all of the free variables at to. Only the seven state values were passed to 

HAMING for integration during the gravity turn portion; the seven co-state values were 

set to zero. This could be accomplished because no optimal control was being performed 

during the gravity turn portion. At the end of the gravity turn portion, the current 

(integrated through the gravity turn portion) values of the state variables were coupled 

with the initial (or corrected) values of the co-state variables. These 14 values were 

passed to HAMING to begin the integration of the optimal control portion and integrated 

as in the previous chapter to the determined final time. The result of this corrected the 

flight path angle, the heading angle, and the value for the final time at to and corrected the 

free co-state variables at the end of the gravity turn portion of the trajectory. 

The same five inclination cases that were considered in chapter 5 were repeated 

here. In addition the values presented in Tables 5-1 and 5-2 also apply to this scenario. 
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6.2 Pay load Mass to Orbit 

The first case considered was the rendezvous to a 28.5-degree orbit from a launch 

latitude of 28.5 degrees. The coplanar value had 9orb = 3.306526258 radians with the non- 

coplanar minimum value of 9orb = 3.111049382 radians and maximum value of 0orb = 

3.502003134 radians. Figure 6-1 compares the payload mass to orbit for both the gravity 

turn and non-aerodynamic scenarios. 
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Figure 6-1. Case 1: Payload Mass vs. Orbit Longitude 

Just as in the non-aerodynamic scenario, the maximum cost in payload mass to 

deliver a payload 11.25 degrees out of the plane was relatively small, about 500 kg in this 

case. Again, the curve was relatively flat between and the total payload deliverable was 

relatively large. Adding drag to the model resulted in an additional cost in payload mass 
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of about 4000-kg over the non-aerodynamic scenario, which was relatively consistent 

across the entire 22.5-degree range of orbit longitude. 

The second case considered was a rendezvous orbit at 35 degrees inclination. The 

coplanar value for 0orb = 3.980123400 radians and the respective minimum and maximum 

values were 9orb = 3.793591337 radians and eorb = 4.186290419 radians. The results for 

this case are shown below in Figure 6-2. 
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Figure 6-2. Case 2: Payload Mass vs. Orbit Longitude 

Figure 6-2 shows that the cost in payload mass had become much larger for the 

gravity turn scenario. We were still able to get a payload to orbit across the entire 22.5- 

degree range, however, it was much smaller than the non-aerodynamic scenario. Notice 

also that while the difference between the coplanar orbits remained about 4000-kg, the 
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difference was approximately 8000-kg for the far non-coplanar orbits. It has gotten more 

expensive to get to the non-coplanar orbits. 

The third case looked at a rendezvous orbit with an inclination of 45 degrees. The 

coplanar value was 0orb 
= 4.293552296 radians, with respective minimum and maximum 

values of Gorb = 4.107020232 radians, and 8orb = 4.499719314 radians. The compared 

results are below in Figure 6-3. 
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Figure 6-3. Case 3: Payload Mass vs. Orbit Longitude 

As before, we lost the ability to span the entire range of orbit longitudes. For the 

gravity turn case, we could only go about 7.5 degrees as opposed to the 10 degrees for the 

non-aerodynamic scenario. The increasing mass difference between the two scenarios 

that was noted in the previous case continued with this case. 

52 



The fourth case was picked to mimic a possible space station rendezvous at an 

inclination of 57 degrees. The coplanar value for 6orb = 4.516974957 radians, with 

minimum and maximum values of 0orb = 4.320625417 radians, and 9orb = 4.713324499 

radians. The results for this case are shown in Figure 6-4. 
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Figure 6-4. Case 4: Payload Mass vs. Orbit Longitude 

The same trends that appeared in the previous scenario also appeared for this case. 

Payload mass decreased with inclination and the far non-coplanar orbits that were 

reachable for lower inclinations were not possible here. For the non-aerodynamic 

scenario, we were able to launch a payload almost 7 degrees out of the plane and for the 

gravity turn scenario, that value has dropped to about 5.75 degrees. This result was still 

attractive in that for a rescue mission, very little payload must be delivered. In addition, 

we still had access to over half of the 22.5-degree non-coplanar range. 
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The final case was an attempt to reach a 25-degree inclination orbit as described 

in the previous chapter. The results for the gravity turn scenario are compared to the non- 

aerodynamic results in Figure 6-5. 
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Figure 6-5. Case 5: Payload Mass vs. Orbit Longitude 

The results for this case were very reasonable. Between 4100 and 7500-kg could 

be delivered over the 22.5 degree range for the gravity turn scenario. This was almost 

8000-kg less than for the non-aerodynamic scenario, however this was still an 

appreciable amount. As with the no-aerodynamic scenario, payload masses decreased 

quickly as inclination decreased, and inclinations below 23 degrees could not be reached. 
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6.3 Control Variables 

For the gravity turn scenario, the control variables were examined as a function of 

time for the 28.5-degree inclination case (case 1) and the 57-degree inclination case (case 

4).   Beginning with case 1, Figure 6-6 shows roll as a function of time for the coplanar 

trajectory as well as the minimum and maximum non-coplanar trajectories which 

occurred at -11.25 degrees and + 11.25 degrees respectively. 
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Figure 6-6. Roll vs. Time for Case 1 

The vehicle performed a roll maneuver during all three trajectories as soon as the 

gravity turn portion of the trajectory was completed. For the coplanar trajectory, the 

vehicle almost inverted itself to a roll value of approximately 3.18 radians, which 

decreased to 3.15 radians at the final time. While following the two non-coplanar 

trajectories, the vehicle performed roughly the same maneuver at the end of the gravity 

turn portion with the value of the roll decreasing roughly 0.5 radians to the final time. 

The difference in values between the two was approximately 0.1 radians, which was 

maintained throughout the optimal control portion of the trajectory. 
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The angle of attack as a function of time for all three trajectories is shown in 

Figure 6-7. 
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Figure 6-7. Angle of Attack vs. Time for Case 1 

Compared to the values for the non-aerodynamic scenario (Figure 5-8), these 

results exhibited some similar characteristics. All three trajectories showed nearly linear 

increases in the angle of attack throughout the latter portion of each trajectory (> .29 TU). 

The values of angle of attack were larger for the non-coplanar trajectory and the largest 

values were required for the +11.25-degree trajectory. Some differences were that for 

this scenario, there was more of a difference between the coplanar and non-coplanar 

curves. In addition, the final values for angle of attack were approximately 0.1 radians 

less than the values for the non-aerodynamic scenario. 

Next, we move to the 57-degree inclination case, case 4. Just as in the non- 

aerodynamic scenario, the minimum and maximum non-coplanar trajectories had to be 

determined based on delivery of approximately 3000-kg of payload to orbit. For the 
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gravity turn scenario, this set the minimum value for orbit longitude at 0orb = 4.408 

radians and the maximum value for orbit longitude at 0orb = 4.605 radians. This equated 

to roughly 5.8 degrees for the minimum and 5.4 degrees for the maximum. The results 

for roll as a function of time are given in Figure 6-8. 

o.UU 

^ 5.00 - 

|  4.00 - 
-3 

+5.4 deg. 

2  3.00 - coplanar 
**m* 

=3   2.00 - 

1.00 - -5.8 deg. 

U.W 1 1                            1 i 

0.00 0.10 0.20                0.30 

Time (TU) 

0.40 0.50 

Figure 6-8. Roll vs. Time for Case 4 

The results from this scenario were very similar to the non-aerodynamic scenario 

(Figure 5-9). The vehicle performed gradual rolls to the left during the coplanar and 

+5.4-degree trajectories while the vehicle performed a gradual roll to the right during the 

-5.8-degree trajectory just as it did for the non-aerodynamic scenario. Another 

interesting result for this scenario was that the overall roll maneuver performed during all 

three trajectories was very similar to those performed along the non-coplanar trajectories 

for case 1 above. An initial value was attained after the gravity turn portion, and the 

vehicle continued in a gradual roll to the final time. 
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The angle of attack as a function of time for the three trajectories of case 4 is 

shown below in Figure 6-9. 
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Figure 6-9. Angle of Attack vs. Time for Case 4 

Once again similar results were obtained compared to the non-aerodynamic 

scenario (Figure 5-10). Very different behavior was observed between the coplanar and 

non-coplanar trajectories. A nearly linear increase to a relatively small value of angle of 

attack was observed for the coplanar trajectory. The non-coplanar trajectories showed a 

rather steep increase in angle of attack to almost 1 radian peaking shortly before the final 

time. 

The results from this section showed that while the actual values of roll and angle 

of attack were different for the gravity turn scenario compared to the non-aerodynamic 

scenario, the values for each trajectory relative to each other for the different cases 

remained almost identical. In other words, the shapes of the curves were roughly the 
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same for the two cases independent of the scenario for times greater than 0.29 TU. For a 

given case, the vehicle performed roughly same maneuvers along the non-coplanar 

trajectories relative to the coplanar trajectory and ended up in roughly the same 

orientation. 

This chapter demonstrated again that reasonable payload masses could be 

launched and reasonable values for roll and angle of attack utilized to follow non- 

coplanar trajectories to quick rendezvous. In addition, the gravity turn method through 

the atmosphere scenario is used by current launch vehicles. Adding the optimal control 

portion outside the atmosphere, therefore, makes this scenario feasible for current launch 

vehicles as well. Some final conclusions and recommendations for further study will be 

presented in the next chapter. 
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VH.    CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions 

The goal of this research was to determine the feasibility of optimal, non-coplanar 

launch to rendezvous and to examine the cost, in payload mass, of following such 

trajectories. The results from the last two chapters demonstrated that not only was 

following these trajectories feasible, but that the cost, in terms of payload mass, was not 

outrageous. In fact, the capability demonstrated by this technique to deliver a 3000-kg 

payload to low earth orbit, 5.5 degrees out of the plane, at an inclination of 57°, paves the 

way for much more flexibility in the way certain launch operations could be conducted. 

For example, if the goal were simply to launch to a particular orbital plane, launch 

windows would be much more flexible. In addition, for those orbits that were reachable, 

the capability of 'popping-up' next to the target at burnout would improve the success 

rate for time critical missions. 

All of the cases considered for this study could be valid scenarios for launches 

from the Eastern Range. Cases one, two, and five demonstrated that the vehicle (and an 

appreciable payload) could reach orbit across the entire 22.5° range. In other words, the 

vehicle could be launched for a direct rendezvous with the 'target' because the 'target' 

orbit would be accessible throughout the entire 90-minutes required to orbit the earth 

once. Therefore, the launch time would be dictated by when the 'target' vehicle was in 

proper phase with the launch site within the 22.5° range. This would facilitate a direct 

launch to rendezvous within (at worst) 24-hours from the need arising, assuming the 

vehicle was prepared for launch. While cases three and four could not reach across the 
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entire 22.5° range from this single launch facility, adding a second launch facility with 

overlapping coverage would allow quick rendezvous across the 22.5° range for the higher 

inclination orbits as well.. 

In addition to the payload mass results, analysis of the control variables provided 

some valuable insight. Although only results for cases one and four were presented, they 

indicated that the values for roll and angle of attack throughout the trajectory were within 

acceptable levels. In other words, the mathematics was not saying that the optimal 

method to achieve the specified orbit was to orient the vehicle perpendicular to the 

velocity vector. The values were consistent with requisite orientations for a vehicle 

attempting to reach orbit. This added further support to the conclusion that launching on 

these non-coplanar trajectories is feasible. 

7.2 Recommendations 

The obvious next step is to remove the gravity turn restriction in the atmosphere. 

Although the results from this research are exciting, the true validity of this technique 

will only be realized by extending the optimal control through the atmospheric portion of 

the trajectory. Recall that the vehicle selected for this study was chosen for the relatively 

high lift-to-drag ratio compared to other current SSTO designs. The model as presented 

here does not exploit this advantage. The results are not expected to differ significantly 

from those presented here because of this and the fact that the vehicle is only in the 

atmosphere less than 25% of the total trajectory. Unfortunately, problems resulting from 

trying to incorporate the optimal control with the atmospheric and aerodynamic models 

were unresolved in time for inclusion in this thesis. 
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Another interesting result warranting further examination comes from the plots of 

payload mass presented in the previous chapters. The first thing that catches the eye is 

that the curves are asymmetric. The asymmetry itself can be attributed to the rotation of 

the earth. This was determined by running EXTRAP with the value of the earth's 

rotation, co, set to zero. The result was a perfectly symmetric curve with the maximum 

mass value coming from the coplanar trajectory. The plots from chapters five and six 

have a maximum mass value from the first non-coplanar trajectory to the west of the 

coplanar trajectory. This may be a result of the inability to define a truly coplanar launch 

trajectory, but could be influenced by other factors. In addition, the plots indicate that it 

costs more payload mass to go eastward than westward. This is counter-intuitive has no 

explanation at this time. Further study of these trajectories and further analysis of what 

the vehicle is actually doing along the trajectories may explain this phenomenon. 

The missions and activities of humans in space are continually evolving. As a 

result, cheaper and more efficient methods for launching into space must also evolve. 

The results of this thesis effort demonstrate a step in this evolution. The ability to launch 

directly to rendezvous with an orbiting object within 24-hours, while keeping the cost in 

payload mass reasonable is a very desirable goal. It saves both waiting times on the 

ground and time in orbit by not having to play catch-up. This in turn reduces the overall 

monetary cost of such missions. The technique outlined here opens up some interesting 

and exciting possibilities for the future of space travel. 
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APPENDIX A: Co-State Equations of Motion 

Each of these equations of motion is obtained by taking the negative of the partial 

derivative of the Hamiltonian with respect to the respective state. In equation form this 

means Ä,j = . The Hamiltonian, equation 3-22, is reproduced here for convenience. 
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The first equation of motion for XT is given by: 
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where p' is the derivative of air density (which is a function of altitude and therefore r) 

with respect to r. 

Since 9 does not appear explicitly in the Hamiltonian, the equation for Xe is 

trivial and is written as: 
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The third equation, which gives X.^, can be written as: 
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i m    j v cosy sec <|)sini|/ + 2©(cos <j) + sin <j) cos \\f tan y) 
(A-4) 

The fourth equation determines the equation of motion for Xv, which is given as: 

X „=- 
m 
dv 

A,rsiny + Xe 

cDSpv 

cosy sin vj; sec <jT 
+ X, 

cosy cos v|/ 

V 

+ K 

+ Ä,., 

v,   m   ) 
fTsinacosa^l   cLSpcosa    gcosy    cosy .) 1 _—|  

2m v r 

'Tsinasinasecy^   cLSpsinasecy    cosy sin v|/ tan <|) 
mv 2m 

(A-5) 

The next equation yields the equation of motion for Las: 

X  = -*U 

.   fvsinysinvi/secdA   „  fvsinycosii/ 
-^vcosy + Aj  i z 31 \ + xA 1 21 

+ Xvgcosy-Xy 

I Tsinr» «I 
-X 

^gsiny    vsiny^ 
v r  ; 

'Tsinasinasecytany    cL Spy sin a secy tan y 
v mv 
f 

2m 

+ X„ 
vsinysinwtand)    „ , 2i  !  + 2(0 cos f cos v|/ sec (p 

V 

(A-6) 
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The sixth co-state equation of motion is: 

ky    ~ 
m 
d\\i 

v cosy cos \\i sec § 

v r 
-2A, ©cos(|)cosi|/ 

+ X, 
vcosy sin vj/ 

-kJ 2cocos(|)sinv|/tany + 
v cosy cos i|/ tan ty 

j) 

(A-7) 

As mentioned in Chapter three, the value of Xm was not important to the problem 

and was set to zero from the initial time to the final time. Therefore the final co-state 

equation of motion is: 

dm 
(A-8) 

Equations A-2 through A-8 represent the seven co-state equations of motion that 

were utilized by the model to determine the values for the Lagrange multipliers from the 

initial time to the final time. 
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